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ABSTRACT

A convergent synthesis of (-)-2-epi-peloruside A has been achieved. Highlights include implementation of multicomponent type I anion relay
chemistry (ARC) to unite 2-TBS-1,3-dithiane with two epoxides to construct the eastern hemisphere, a late-stage dithiane union to secure the
complete, fully functionalized carbon backbone, and Yamaguchi macrolactonization, which led to (-)-2-epi-peloruside A via an unexpected
epimerization at C(2).

In 2000, Northcote and co-workers reported the isolation and
relative stereochemistry of (+)-peloruside A (1),1 an archi-
tecturally complex marine metabolite produced by the sponge
Mycale (Carmia). Although a microtubule-stabilizing agent
with potency similar to Taxol,2 recent studies reveal that (+)-
peloruside A competes competitively for the laulimalide
binding site at a newly discovered microtubule site.3

Our interest in (+)-peloruside A (1, Scheme 1) emanated
from the synthetic challenge, in conjunction with the
opportunity to showcase the synthetic utility of dithiane
linchpin tactics, in particular the use of the three-component
union of trialkylsilyl dithianes with diverse electrophiles, a
synthetic tactic we now recognize as type I anion relay
chemistry(ARC).4

Structurally, (+)-peloruside A (1) comprises 10 stereogenic
centers, a Z-trisubstituted olefin, and a six-membered hemiket-
al ring, inscribed in a 16-membered macrolactone. Not
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Scheme 1. (+)-Peloruside A Retrosynthesis
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surprisingly, the structural complexity, interesting biological
activity, and scarcity have led to considerable interest from
both the chemical5 and biological communities.6

In 2003, De Brabander and co-workers7 achieved an
elegant total synthesis of unnatural (-)-peloruside A, thus
permitting assignment of the absolute configuration. Shortly
thereafter (2005), the Taylor group8 reported the first total
synthesis of natural (+)-peloruside A, followed in 2008 by
a second total synthesis from the Ghosh laboratory.9 We
report here completion of the total synthesis of (-)-2-epi-
peluroside A (28, see Scheme 5), the result of a surprising,
late-stage epimerization (vide infra) that procluded access
to (+)-peloruside A (1).

Shortly after the report by Northcote and co-workers,1 we
initiated a synthetic venture directed toward the total
synthesis of (+)-peloruside A (1).10 Our endgame strategy
called for formation of the inscribed tetrahydropyran ring
after macrocyclization (Scheme 1). Central to this scenario
was a flexible route that would permit either acid or alcohol
activation to achieve macrolactonization. Taken together,
(+)-peloruside A (1) was envisioned to arise from macrolide
2 upon removal of the dithiane and isopropylidene protecting
groups. To construct the macrolactone precursor, we would
employ union of a dithiane 3 with aldehyde 4, followed by
appropriate functional group adjustments.

Construction of dithiane (-)-3 began with known ho-
moallylic alcohol (+)-5 (Scheme 2),11 which was protected
as the BPS-ether. Ozonolysis furnished aldehyde (+)-6.
Installation of the trisubstituted Z-olefin was next achieved
via a Still-Gennari modification of the Horner-Wadsworth-
Emmons olefination12 to yield ester (-)-8 in 89% yield as a
single diastereomer. Next, enal (-)-9, available by a two-

step reduction/oxidation sequence, was subjected to a Brown
asymmetric allylation13 to generate alcohol (-)-10 in a highly
diastereoselective fashion (>20:1).14,15 Protection of the
resulting alcohol as the PMB ether, followed by selective
dihydroxylation16 of the terminal olefin and oxidative cleav-
age, furnished (-)-11, the requisite aldehyde for the proposed
Mukaiyama aldol.17 Toward this end, reaction of (-)-11 with
the silyl-enol ether derived from ketone 1218 led to �-hydroxy
ketone (-)-13 with >20:1 diastereoselectivity at C(13).14

Ketone (-)-13 was then subjected to a SmI2-promoted
Evans-Tishchenko reduction19 to generate (-)-14, possess-
ing the correct stereochemistry at C(11).14

Completion of dithiane (-)-3 entailed formation of the
MOM-ether, reductive removal of the ethyl ester with
DIBAL-H, and generation of the methyl ether. The overall
sequence to (-)-3, the dithiane coupling partner, proved
highly efficient, proceeding with a longest linear sequence
of 14 steps and in 21.4% overall yield from (+)-5.

Construction of aldehyde (+)-4 was designed specifically
to demonstrate the utility of our multicomponent type I ARC
protocol, employing epoxide (+)-16, readily prepared from
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Scheme 2. Synthesis of Dithiane (-)-3
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known epoxide (-)-1520 and epoxide (+)-1821 (Scheme 3).
Toward this end, addition of the lithium anion of TBS-1,3-
dithiane (17) to epoxide (+)-16, followed by a solvent-
controlled Brook rearrangement (HMPA) and addition of
epoxide (+)-18, furnished alcohol (+)-1914 in 65% yield.
Methyl ether formation, followed by removal of both the
TBS and 1,3-dithiane moieties, led to ketone (+)-20. We
next called upon a hydroxyl-directed 1,3-syn reduction,22

followed in turn by acetonide formation23 and removal of
the benzyl ether via hydrogenolysis, to generate alcohol (+)-
21. Completion of (+)-4, the aldehyde coupling partner, was
achieved in five steps. First, alcohol (+)-21 was converted
via a three-step sequence to the corresponding methyl ester,
and then subjected to oxidative removal of the PMB moiety
to provide (-)-22. Parikh-Doering oxidation24 of the
resultant terminal hydroxyl then furnished aldehyde (+)-4
in 87% yield. The synthesis of (+)-4 also proved efficient,
proceeding with a longest linear sequence of 13 steps and
in 12.9% overall yield from (-)-15.

With advanced coupling fragments (-)-3 and (+)-4 in hand,
we turned to their union (Scheme 4). Reaction of the lithium
anion derived from dithiane (-)-3, with aldehyde (+)-4, in the
presence of HMPA, led to alcohol (-)-23 as a mixture at C(8)
favoring the desired isomer (ca. 9:1) presumably under
Felkin-Anh control.25 Importantly, union of (-)-3 and (+)-4
furnished the complete carbon backbone of (+)-peloruside A.
Formation of seco-acid (-)-24 was next readily achieved, in
two steps, by removal of the PMB ether (DDQ) and saponifica-
tion of the methyl ester (LiOH). Unfortunately, all attempts to

achieve macrolactonization26 via the Mitsunobu protocol proved
unsuccessful; only recovery of starting material or complete
decomposition occurred.

Undeterred, and with acid activation for macrolactonization
as a backup, we inverted the C(15) hydroxyl (Scheme 5).
The inversion required three steps, deprotection of the PMB-
ether, oxidation of the derived secondary hydroxyl, and CBS
reduction,27 to provide the requisite C(15) stereogenicity.
Saponification then furnished seco-acid (-)-25, setting the
stage for macrolactonization. Here, we encountered what
proved to be an unexpected result. Execution of the
Yamaguchi protocol28 involving acid activation and cycliza-
tion generated a macrolide in 71% yield, albeit with
epimerization at C(2) to furnish (-)-26, a result that went
undetected until after global deprotection.

To understand after the fact (vide infra) this result, we
initiated a series of computational studies of (-)-26 and the
corresponding desired C2-epimer. Initial conformational
searches were preformed using Macromodel 7.2 software.29

The resulting low energy conformers were then clustered
according to the macrocyclic ring torsions with the repre-
sentative structures subjected to full geometry optimization
at the B3LYP/6-31G(d,p) level of theory. The undesired,
albeit observed, epimer (-)-26 was found to be more stable
by 1.8 kcal/mol. Not surprisingly, the lowest energy con-
formations of the two compounds possess different macro-
cyclic ring conformations with the major torsional differences
residing in the C1-C2 bond. As seen in Figure 1, the C2
hydrogen of (-)-26 adopts a favorable eclipsed conformation
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Scheme 3. Synthesis of Aldehyde (+)-4

Scheme 4. Efforts toward (+)-Peloruside A
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with the C1 carbonyl due to A(1,3) strain,30 while the
remainder of the macrocyclic ring does not show additional
eclipsed interactions. The epimer, epi-26, on the other hand,
takes up a bisected rather than an eclipsed conformation at
C2, resulting in different C2-C3 and C5-C6 bond torsions
around the protected 1,3-diol. In addition, the lowest energy
macrocyclic ring conformer has one eclipsing interaction
between the C7 methoxy and the C8 hydroxyl groups.

Unaware at the time of the C(2) epimerization, treatment
of macrolide (-)-26 with the Stork reagent [PhI(O2CCF3)2]31

resulted in concomitant hydrolysis of the 1,3-dithiane,
removal of the isopropylidene protecting group, and hemiket-
al formation to yield (-)-27.32 Selective methylation of the
C(3) hydroxyl group with Meerwein’s reagent (Me3OBF4),33

followed by global deprotection employing 4 N HCl in

MeOH, then delivered what was revealed by extensive 1-D
and 2-D NMR analyses to be (-)-2-epi-peloruside A (28).

In summary, the synthesis of 2-epi-peloruside A (28) has
been achieved with a longest linear sequence of 25 steps
and in 0.56% overall yield. Pleasingly, this synthetic venture
demonstrates the utility of both dithiane linchpins and the
multicomponent type I ARC tactic.
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Scheme 5. Synthesis of (-)-2-epi-Peloruside A

Figure 1. Observed (-)-26 epimer in green and the desired C2-
epimer in gray, with the hydrogen at C2 shown in black. The C15
side chain has been omitted for better view.
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